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Fractionation of polydisperse systems: Multiphase coexistence
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The width of the distribution of species in a polydisperse system is employed in a small-variable expansion,
to obtain a well-controlled and compact scheme by which to calculate phase equilibria in multiphase systems.
General and universal relations are derived, which determine the partitioning of the fluid components among
the phases. The analysis applies to mixtures of arbitrarily many slightly polydisperse components. An explicit
solution is approximated for hard spherg81063-651X99)07003-§

PACS numbefs): 05.20—y, 64.10+h

It is vital to gain an understanding of polydispersity, duepolydisperse system, resulting in a universal law of fraction-
to its ubiquity in both synthetic and biological complex flu- ation. In this paper, the method is applied to the coexistence
ids. A polydisperse substance is a mixture of infinitely manybetween arbitrary numbers of phase- a situation of impor-
components, and can, in general, separate into arbitrary nuriance to many polydisperse substanicks.
bers of coexisting phases. These properties typically engen- A slightly polydisperse systertone with a narrow distri-
der great mathematical complexity, and have been a stunfution of specieksis in principle very different from a truly
bling block to the concise formulation of polydisperse Pure one, which has no mixing entropy and whose distribu-
thermodynamics. Experimentgl—3] and simulationa[4,5] tion is a Dirac delta function. Nevertheless, one would ex-
studies of polydisperse polymeric fluids and colloidal sus-Pect the physical properties of the two systems to be very
pensions have catalogued diverse behavior and intrica@milar. That similarity motivates this study, since the pure
phase diagrams. Until recently, theoretical treatments o$ystem is vastly simpler to analyze than its polydisperse
polydispersity relied on uncontrolled approximatic{@ or counterpart. To exploit that simplicity, a formalism is re-
idealized modelg7,8], while generic schemes and funda- quired which treats monodisperse and polydisperse systems

mental understanding remained elusive. on an equal footing. Such a formalism is now derived-
The phase behavior gfure (i.e., monodispergesystems ~ tending the method for two-phase equilibrium in Ref2]).
is (in principle at leastrelatively straightforward to analyze. ~ Let us first define a numbet; to characterize each of

The standard method, formulated the last cenf@y in-  the N particles in the systenwith i=1,... N) [14]. For
volves integrating(by various approximate methgdshe  size polydispersity, this is the fractional differenag
Boltzmann factor over all configurations to construct the=(R;—R)/R, of the particle’s radiusx; from some refer-
Helmholtz free energy as a function of temperature, densityence lengthR, (with the obvious generalization to charge
and volume. From this, the densities of coexisting phases capolydispersity, etg. Henceforthg shall be referred to as the
be calculated and the phase diagram deduced. One sourcesife parameter, for definiteness. The population of species in
difficulty in analyzing the phase equilibria of polydisperse the system is characterized by a continuous distribution
systems is that the density alone does not fully characterize &¢), which is unnormalized, and so
phase. Instead, we wish to know the enti@mpositionof
each phase. That requires the evaluation of an infinite set of o
variables. J f(e¢)de=N.

Two systematic schemes were developed recently to solve -
the polydisperse phase equilibria problem. The powerful

“annealed moments” method of Sollich and Café®] and  |n general, the free enerdy of a polydisperse system is a
Warren[11] applies to a large subset of model systems, an@domplicated functional of (¢). It will be expressed in units
will not be further discussed here. The second scheme, whichf kT wherekg is Boltzmann’s constant arilis tempera-

applies to real systems, was developed by the present auth@re ' For a polydisperse ideal gas, the free endfyis
[12]. It uses thewidth of the distribution of species as a small gasily showr{7,11] to be, per unit volume,

expansion parameter, and is therefore validsiaghtly poly-
disperse systems. In other words, the scheme is applicable

whenever the polydisperse propetg/g., thesizeor charge F_id_ f“’ f(e) Inf(S) _4 @
V 1

of a particlg varies only a little throughout the systefil.B. Vv
Here, “particle” is used to denote the polydisperse fluid el-
ements, which could be polymer molecules, colloidal IaticesWh. his th | ideal f d I
etc) The method was usdd 2] to find the complete distri- Ich 1S the usual ideal gas Iree energy, summed over a

butions of species in two coexisting phases of any slightlf‘pec'es' As_th|s expression contains the_z mixing entropy, it is
useful to write the free energy of a nonideal system as

& —

—o \%
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Here F®* is the “excess” part of the free enerdpver and  f(&)/V, let us usemomentsof this distribution (as in

above the ideal partderiving from interactions. [10,11,16). The thermodynamic variables
Let us consider a system whose “initial” populatidbe-
fore phase separatipris known. This will be called the @ f(e)
“parent” distribution fp(£). In a system where this parent is Paff Ry de, a=0,1,..., (10

partitioned intoM coexisting phases, we wish to determine
the distributionf (¢) 4 in each phasel=1, ... M. By con-

servation of matter will be called “moment densities.” Note thaiaze_“p, SO

thatp, is the overall number densiy. [Mean powers of the
M size parametee® are moments of th@ormalizeddistribu-
> f(e),=fp(e). (3)  tion p(g)=f(e)/N.] Each moment density, being a linear
A=1 combination of conserved species densities, is itself con-
served and, accordingly, respects the usual equilibrium con-
Qtons For instance, each “moment chemical potential,”
defined byu ,=d(F/V)/dp,, is equal in coexisting phases.
This is clear from expanding the species chemical potential

At equilibrium, the chemical potential is equal in all coexist-
ing phases. This statement applies for each species of pa
ticles, and so the equation

w(e) =p(e)g Ve (4)  in partial derivatives:
represents an uncountable infinity of thermodynamic con- SF = 5pa
straints for any pair of phased and B. Since there is a uie)= 5T(e) 2 ap.. 5(e) 2 Mo (11)

continuum of species, the chemical potential i&iactional

derivative of the free energy: Thus, equality ofu(e) in coexisting phases requires equality

SF[f(e)] of eachy. _ o
u(e)= 5],—) (5) We now have a discrete set of thermodynamic variables,
(e and can substitute the power series expresdion (11)] for
From Eq.(2), u(g) can be written in two parts: w(#) into Eq.(9a), yielding
pe)=puYe)+uNe). (6) "
f(e)4=fp(e) —ex 2 (ne—mipe
Functional differentiation of Eq(1) yields a=0
(129
f
w(e)= (v )} (7)  with
IFIV
Collecting together Eq44), (6), and(7) gives the ratios of p&= , (12b)
densities in any two of thé coexisting phases, “ Ipq
f(s)B/VB . which, with Eq.(10), forms a countable infinity of simulta-
f(e) IV 4 =exg ue) 4= u(e)sl, ®  neous equations. The excess free energy is ndunetion
F*(pg.p1, - - . ) of themoment densities.

in terms of the excess parts of the chemical potentials. Thus, The equations thus far are perfectly general, but the ad-
all but one distribution can be eliminated from E8), yield-  vantages of this formalism become apparent when we con-
ing the solution for any given phase: sider a narrow distribution of sizes, i.e., a system which is
close to monodisperse. If the origin for the parametds
Vi chosen(by fixing the referenc&,) to be close to the center
fle)a= fp(s)/ ;::1 V_Aqu“ex(g)A_“ex(S)B]’ of the narrow distribution, thea is asmallnumber for most
(9a  if not all particles. Hence, in Eq123), fp(e) vanishes for
largee, and so the power series in the denominator becomes
where a well-controlled expansion. The results have a particularly
simple form if the origin is chosen to be the mean of the
SF{f(e)]

(9b) parent distribution, so tha_tpEO. Henceforth this choice is
ot (e) assumed.

. . - . . . The solution to Egs(10), (1238, and(12b) is now calcu-
ex
Given a knowledge of ®*, which specifies the interactions in lated to first order ir. This will yield the exact phase equi-

the system(and of the phase volumgsEgs. (98 and (9b) o o > .
represent a complete solution to the problem. However, the}b”a in the limit of a narrow parent;“»— 0. Expanding Eq.

constitute an uncountable infinity of nonlinear simultaneou 124 to first order and integrating over gives

u(e)=

equations. This is the source of the mathematical complexity M
mentioned earlier. 2
. S . . E, ex 1+0
Some simplification is achieved by making a change of =1 V4 P04~ 1om) = [ (e9].

variables. Rather than expressing a thermodynamic state in
terms of the densities of the individual species of particlesTo zeroth order, Eq(8) gives
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Vi N3
V—exﬂﬂgﬁ_ﬂgé =N [1TOGe)].
A A

Population

Note the different orders of expansion. Substituting these
expressions back into EqL23 yields
M
fle)a _ fe(e) ex . ° ex 2
N, N l-sui s+ Ngzl NppqigtO(e9)|. _

13

Size

FIG. 1. The composition of a sample which could exhibit mul-

To obtain Eq.(13), the prefactor of fo(g) in Eq. (129 is  tiphase coexistence. The narrow part of the distribution in ratage
expanded to first order in, but the distributionfp(g) itself ~ can be treated by the present theory, as could the part in rénge
remains exact. Thus, other than narrowness, no limitations
are put on the form of (). Any distribution can be treated, Scattered only from the near-monodisperse colloid contains
however asymmetric or discontinuous. The population maynformation on its fractionatiof19], which should obey Eq.
even contain finite amounts of some components, contributl4). As an illustration, a multiphase colloidal sample, with
ing & functions tofp(&). the composition shown in Fig. 1, will obey the at_)ove rela-

In Eq. (13) we see that the distribution in any given phasetions, applied only to those particles in ran¥e with the
A depends, as one would expect, on the properties of all therigin of & defined at its center. The relations are equally
other M phases with which it coexists. However, taking the @pplicable to particles in rangé if we are blind to all other -
difference(denotedA) between theormalizeddistributions ~ particles(e.g., they may be made invisible by matching their
in anytwo of the M coexisting phases, we find the strikingly "efractive index to that of the solventand redefines=0

simple expression appropriately. o o o
The form of the solution in Eq14) is of interest in itself,
Ap(e)——e pp(e) Au (14)  not least for the nonappearance./bf. However, one quan-

L tity remains unknown: the constant of proportionality.$*.

in the limit ase?,— 0, wherepp(¢) is the normalized parent That constant is system dependent. For some substanfes,
distribution.(Note that the solution for each phdsgg. (13)]  can be calculated using thermodynamic perturbation theory
is recoverable from the neater suffqg. (3)] and difference  [12,15. Unfortunately, this is not possible for a system of
[Eqg. (14)] equations. Surprisingly we have found that, in the hard spheres, as its Hamiltonian is nondifferentiable. Since
multiphase system, the difference in compositions of anythe hard-sphere system is of great practical interest for mod-
pair of phases is identical to the expression found edligf  elling systems with repulsive interactions, the constant of
for two-phase coexistence. Thus the same universal laws foproportionality is now calculated for that case.
low [12], relating any pair of phases. Thisnst an obvious The excess part of the free energy of the polydisperse
result, since the parent appearing in Etf}) is the combined hard-sphere fluid can be Taylor expanded in the small size
population of the whole system, not just of the two phases irparameter of each of thi particles of interest thus:
guestion as it is in the two-phase coexistence problem.

Equation(14) is very generally applicable. It is valid for ox_ —ex
any system with a narrow distributigthat is, narrower than Fo= Fmono+ZJl & e,
the range of linearizability of the fugacjtywhatever par-
ticles or interactions it comprises. Furthermore, recall that
need not parametrize size deviations, but could represe
charge, mass, or any other sole polydisperse quantity. B
analyzing multiphase coexistence, we have found that E
(14) does not even depend oM, the number of phases

whereFﬁfmo is the excess free energy of the reference com-
n : ;

onent of monodisperse hard sphefiesthe presence of the
est of the system — see Fig).. In the reference component,
% particles are alike, and so the differentiation may be per-
formed on particle number 1 only, without loss of generality,

present. giving
We have considered a system in which a slightly polydis-
perse fluid component is partitioned among several phases. =
The coexistence of more than two phases may be the result F&=F&not Ne 3 +0(&?).
of tuning the temperature to the triple point of the monodis- #11s=0

perse reference system. Alternatively, the slightly polydis- ) _ ) } ) _
perse particles may be in the presence of other, dissimilafne change in the 'de”t't&hf speciepof particle 1 when its
components which, by the Gibbs phase raihich states ~Size is varied affects onlf*. The excess free energy con-
that ann-component mixture can exhibit up tor 1 coexist-  tains the physu_:al effect of t_he partlcle’_s size on the rest of
ing phases at arbitrary temperatyrean induce multiphase the system. By its presence in the container, part|c|e 1 §|mply
coexistencg17]. Within such a multicomponent system, a €xcludes other particles from a volunvg,q, given that its
particular, slightly polydisperse component will respect thelntéractions are purely ha_rd and repulsive. Thus, increasing
above relations, which may be tested by an experimentdfS Size reduces the effective system volume, and so

probe which is “blind” to the other components. For in- JES JEX 4V

stance, near-monodisperse colloidal particles in the presence - excl
of “depletant” species[18] exhibit multiple phases. Light dey IV dey

(15
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In fact the volume from which particle 1 excludes other par- ApS=—12veTAp (18)
ticles, Veye, depends on their species, and so the quantity in
Eqg. (15) is a net effective valuajefinedby the equation. For

the special case of an almost pure hard-sphere systetin  for hard spheres in ergodiluid) phases. This calculation
the presence of other, dissimilar compongnt¥e.  contains the lowest-order effects of polydispersity. Once the
= %wﬁ?,(2+sl)3 at low density(correct up to second virial polydispersity is sufficient to alter the mode of packieg.,
coefficien}. At high density, the geometry of high-order in- small particles preferentially filling the gaps between big
terparticle interactions modifies this. In any cad¥,,y/de;  oneg, higher-order analysis is needed.

is of the order of a particle volume. The resulting excess free It is apparent that combining a moment description with a
energy density of a polydisperse hard sphere fluid is small-variable expansion in the distribution’s width is a pro-
ductive way to analyze polydisperse systems. While the ap-
plications of this study are clearly wide ranging, it is in-
tended to extend its scope by analyzing correlation functions
and multiply polydisperse systeni45]. In addition, some
whereV®" is some(unknown effective volume, of the order work is required, using higher-order analysis, to establish the
of the volume of an average sphere, and exactly that for gadius of convergence of the expansion and quantify more
near-pure, low-density system. Applying E42b) yields precisely the method’s regime of validity.

ps=12PVer (17)

Fex ex
v =y F120 POV O(s), (16)
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in terms of the system’s excess pressBf€ over an ideal Cates, Peter Sollich, David Fairhurst, Patrick Warren, and
gas. Since coexisting phases have the same total pressureWwilson Poon. The work was funded by the EPSR&rant
follows thatA u$*= — 12veTA P, So the constant of propor- No. GR/K56023 and the Royal Society of Edinburgh
tionality in Eq.(14) is (SOEID).

[1] R. Koningsveld, Ber. Bunsenges. Phys. Ch&1.960(1977). [13] G. Fredrickson, Naturé_ondon 395, 323(1998.

[2] J. Bibette, J. Colloid Interface Sci47, 474(1991). [14] In future work[15], systems will be treated which are simul-
[3] N. Clarke, T. C. B. McLeish, and S. D. Jenkins, Macromol- taneously polydisperse in several properties; e.g., particles may
ecules28, 4651(1995. differ in both sizeand charge. For the present study, a singly

[4] M. R. Stapleton, D. J. Tildesley, and N. Quirke, J. Chem. Phys. polydisperse system is considered.
92, 4456(1990. [15] R. M. L. Evans(unpublished
[5] P. G. Bolhuis and D. A. Kofke, Phys. Rev.5, 634(1996. [16] J. L. Barrat and J.-P. Hansen, J. PhifZarig 47, 1547(1986.
[6] P. Salgi and R. Rajagopalan, Adv. Colloid Interface 3d. [17] Note that the slightly polydisperse component under discus-

169 (1993. sion is not sufficiently broad in itself to induce multiple phases
[7] J. A. Gualtieri, J. M. Kincaid, and G. Morrison, J. Chem. Phys. in the absence of other componefagcept at the triple point
77, 521(1982. To the order of calculation, the free energyliisear in the
[8] J. G. Briano and E. D. Glandt, J. Chem. P8@.3336(1984). moment density,, and so the free energy surface has only as
[9] See, e.g., F. ReifFundamentals of Statistical and Thermal many cotangential points as the monodisperse reference sys-
Physics(McGraw-Hill, Tokyo, Japan, 1965 tem.
[10] P. Sollich and M. E. Cates, Phys. Rev. L&, 1365(1998. [18] S. Asakura and F. Oosawa, J. Polym. 348, 183 (1958; A.
[11] P. B. Warren, Phys. Rev. Le®0, 1369(1998. Vrij, Pure Appl. Chem48, 471(1976.

[12] R. M. L. Evans, D. J. Fairhurst, and W. C. K. Poon, Phys. Rev.[19] P. N. Pusey and W. van Megen, J. Chem. PI8%. 3513
Lett. 81, 1326(1998. (1984.



