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Fractionation of polydisperse systems: Multiphase coexistence

R. M. L. Evans*
Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland

~Received 15 October 1998!

The width of the distribution of species in a polydisperse system is employed in a small-variable expansion,
to obtain a well-controlled and compact scheme by which to calculate phase equilibria in multiphase systems.
General and universal relations are derived, which determine the partitioning of the fluid components among
the phases. The analysis applies to mixtures of arbitrarily many slightly polydisperse components. An explicit
solution is approximated for hard spheres.@S1063-651X~99!07003-8#

PACS number~s!: 05.20.2y, 64.10.1h
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It is vital to gain an understanding of polydispersity, d
to its ubiquity in both synthetic and biological complex fl
ids. A polydisperse substance is a mixture of infinitely ma
components, and can, in general, separate into arbitrary n
bers of coexisting phases. These properties typically eng
der great mathematical complexity, and have been a st
bling block to the concise formulation of polydisper
thermodynamics. Experimental@1–3# and simulational@4,5#
studies of polydisperse polymeric fluids and colloidal s
pensions have catalogued diverse behavior and intri
phase diagrams. Until recently, theoretical treatments
polydispersity relied on uncontrolled approximations@6# or
idealized models@7,8#, while generic schemes and fund
mental understanding remained elusive.

The phase behavior ofpure ~i.e., monodisperse! systems
is ~in principle at least! relatively straightforward to analyze
The standard method, formulated the last century@9#, in-
volves integrating~by various approximate methods! the
Boltzmann factor over all configurations to construct t
Helmholtz free energy as a function of temperature, dens
and volume. From this, the densities of coexisting phases
be calculated and the phase diagram deduced. One sour
difficulty in analyzing the phase equilibria of polydisper
systems is that the density alone does not fully characteri
phase. Instead, we wish to know the entirecompositionof
each phase. That requires the evaluation of an infinite se
variables.

Two systematic schemes were developed recently to s
the polydisperse phase equilibria problem. The powe
‘‘annealed moments’’ method of Sollich and Cates@10# and
Warren@11# applies to a large subset of model systems, a
will not be further discussed here. The second scheme, w
applies to real systems, was developed by the present au
@12#. It uses thewidth of the distribution of species as a sma
expansion parameter, and is therefore valid forslightly poly-
disperse systems. In other words, the scheme is applic
whenever the polydisperse property~e.g., thesizeor charge
of a particle! varies only a little throughout the system.~N.B.
Here, ‘‘particle’’ is used to denote the polydisperse fluid
ements, which could be polymer molecules, colloidal latic
etc.! The method was used@12# to find the complete distri-
butions of species in two coexisting phases of any sligh
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polydisperse system, resulting in a universal law of fractio
ation. In this paper, the method is applied to the coexiste
between arbitrary numbers of phases — a situation of impor-
tance to many polydisperse substances@13#.

A slightly polydisperse system~one with a narrow distri-
bution of species! is in principle very different from a truly
pure one, which has no mixing entropy and whose distri
tion is a Dirac delta function. Nevertheless, one would e
pect the physical properties of the two systems to be v
similar. That similarity motivates this study, since the pu
system is vastly simpler to analyze than its polydispe
counterpart. To exploit that simplicity, a formalism is r
quired which treats monodisperse and polydisperse syst
on an equal footing. Such a formalism is now derived~ex-
tending the method for two-phase equilibrium in Ref.@12#!.

Let us first define a number« i to characterize each o
the N particles in the system~with i 51, . . . ,N) @14#. For
size polydispersity, this is the fractional difference« i
[(Ri2R0)/R0 of the particle’s radiusRi from some refer-
ence lengthR0 ~with the obvious generalization to charg
polydispersity, etc.!. Henceforth,« shall be referred to as th
size parameter, for definiteness. The population of specie
the system is characterized by a continuous distribut
f («), which is unnormalized, and so

E
2`

`

f ~«! d«5N.

In general, the free energyF of a polydisperse system is
complicated functional off («). It will be expressed in units
of kBT wherekB is Boltzmann’s constant andT is tempera-
ture. For a polydisperse ideal gas, the free energyF id is
easily shown@7,11# to be, per unit volume,

F id

V
5E

2`

`

d«
f ~«!

V F ln
f ~«!

V
21G , ~1!

which is the usual ideal gas free energy, summed over
species. As this expression contains the mixing entropy,
useful to write the free energy of a nonideal system as

F[F id1Fex. ~2!
3192 ©1999 The American Physical Society
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Here Fex is the ‘‘excess’’ part of the free energy~over and
above the ideal part!, deriving from interactions.

Let us consider a system whose ‘‘initial’’ population~be-
fore phase separation! is known. This will be called the
‘‘parent’’ distribution f P(«). In a system where this parent
partitioned intoM coexisting phases, we wish to determi
the distributionf («)A in each phaseA51, . . . ,M. By con-
servation of matter,

(
A51

M

f ~«!A5 f P~«!. ~3!

At equilibrium, the chemical potential is equal in all coexis
ing phases. This statement applies for each species of
ticles, and so the equation

m~«!A5m~«!B ;« ~4!

represents an uncountable infinity of thermodynamic c
straints for any pair of phasesA and B. Since there is a
continuum of species, the chemical potential is afunctional
derivative of the free energy:

m~«![
dF@ f ~«!#

d f ~«!
. ~5!

From Eq.~2!, m(«) can be written in two parts:

m~«!5m id~«!1mex~«!. ~6!

Functional differentiation of Eq.~1! yields

m id~«!5 lnF f ~«!

V G . ~7!

Collecting together Eqs.~4!, ~6!, and ~7! gives the ratios of
densities in any two of theM coexisting phases,

f ~«!B /VB
f ~«!A /VA

5exp@mex~«!A2mex~«!B#, ~8!

in terms of the excess parts of the chemical potentials. T
all but one distribution can be eliminated from Eq.~3!, yield-
ing the solution for any given phase:

f ~«!A5 f P~«!Y (
B51

M
VB
VA

exp@mex~«!A2mex~«!B#,

~9a!

where

mex~«![
dFex@ f ~«!#

d f ~«!
. ~9b!

Given a knowledge ofFex, which specifies the interactions i
the system~and of the phase volumes!, Eqs. ~9a! and ~9b!
represent a complete solution to the problem. However, t
constitute an uncountable infinity of nonlinear simultaneo
equations. This is the source of the mathematical comple
mentioned earlier.

Some simplification is achieved by making a change
variables. Rather than expressing a thermodynamic sta
terms of the densities of the individual species of particl
ar-

-

s,

y
s
ty

f
in
,

f («)/V, let us usemomentsof this distribution ~as in
@10,11,16#!. The thermodynamic variables

ra[E
2`

`

«a
f ~«!

V
d«, a50,1, . . . ,̀ , ~10!

will be called ‘‘moment densities.’’ Note thatra5«ar, so
thatr0 is the overall number densityr. @Mean powers of the
size parameter«a are moments of thenormalizeddistribu-
tion p(«)[ f («)/N.] Each moment density, being a linea
combination of conserved species densities, is itself c
served and, accordingly, respects the usual equilibrium c
ditions. For instance, each ‘‘moment chemical potentia
defined byma[](F/V)/]ra , is equal in coexisting phases
This is clear from expanding the species chemical poten
in partial derivatives:

m~«![
dF

d f ~«!
5 (

a50

`
]F

]ra

dra

d f ~«!
5 (

a50

`

ma «a. ~11!

Thus, equality ofm(«) in coexisting phases requires equali
of eachma .

We now have a discrete set of thermodynamic variab
and can substitute the power series expression@Eq. ~11!# for
m(«) into Eq. ~9a!, yielding

f ~«!A5 f P~«!Y (
B51

M
VB
VA

expS (
a50

`

~maA
ex 2maB

ex !«aD ,

~12a!

with

ma
ex[

]Fex/V

]ra
, ~12b!

which, with Eq.~10!, forms a countable infinity of simulta
neous equations. The excess free energy is now afunction
Fex(r0 ,r1 , . . . ) of themoment densities.

The equations thus far are perfectly general, but the
vantages of this formalism become apparent when we c
sider a narrow distribution of sizes, i.e., a system which
close to monodisperse. If the origin for the parameter« is
chosen~by fixing the referenceR0) to be close to the cente
of the narrow distribution, then« is asmallnumber for most
if not all particles. Hence, in Eq.~12a!, f P(«) vanishes for
large«, and so the power series in the denominator becom
a well-controlled expansion. The results have a particula
simple form if the origin is chosen to be the mean of t
parent distribution, so that«̄P[0. Henceforth this choice is
assumed.

The solution to Eqs.~10!, ~12a!, and~12b! is now calcu-
lated to first order in«. This will yield the exact phase equi
libria in the limit of a narrow parent,«2

P→0. Expanding Eq.
~12a! to first order and integrating over« gives

(
B51

M
VB
VA

exp~m0A
ex 2m0B

ex !5
N

NA
@11O~«2!#.

To zeroth order, Eq.~8! gives
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VB
VA

exp~m0A
ex 2m0B

ex !5
NB
NA

@11O~«!#.

Note the different orders of expansion. Substituting th
expressions back into Eq.~12a! yields

f ~«!A
NA

5
f P~«!

N F12«m1A
ex 1

«

N(
B51

M

NBm1B
ex 1O~«2!G .

~13!

To obtain Eq.~13!, the prefactor of f P(«) in Eq. ~12a! is
expanded to first order in«, but the distributionf P(«) itself
remains exact. Thus, other than narrowness, no limitati
are put on the form off P(«). Any distribution can be treated
however asymmetric or discontinuous. The population m
even contain finite amounts of some components, contri
ing d functions tof P(«).

In Eq. ~13! we see that the distribution in any given pha
A depends, as one would expect, on the properties of all
otherM phases with which it coexists. However, taking t
difference~denotedD) between thenormalizeddistributions
in any two of theM coexisting phases, we find the striking
simple expression

Dp~«!→2« pP~«! Dm1
ex ~14!

in the limit as«2
P→0, wherepP(«) is the normalized paren

distribution.„Note that the solution for each phase@Eq. ~13!#
is recoverable from the neater sum@Eq. ~3!# and difference
@Eq. ~14!# equations.… Surprisingly we have found that, in th
multiphase system, the difference in compositions of a
pair of phases is identical to the expression found earlier@12#
for two-phase coexistence. Thus the same universal laws
low @12#, relating any pair of phases. This isnot an obvious
result, since the parent appearing in Eq.~14! is the combined
population of the whole system, not just of the two phase
question as it is in the two-phase coexistence problem.

Equation~14! is very generally applicable. It is valid fo
any system with a narrow distribution~that is, narrower than
the range of linearizability of the fugacity!, whatever par-
ticles or interactions it comprises. Furthermore, recall tha«
need not parametrize size deviations, but could repre
charge, mass, or any other sole polydisperse quantity.
analyzing multiphase coexistence, we have found that
~14! does not even depend onM, the number of phase
present.

We have considered a system in which a slightly polyd
perse fluid component is partitioned among several pha
The coexistence of more than two phases may be the re
of tuning the temperature to the triple point of the monod
perse reference system. Alternatively, the slightly polyd
perse particles may be in the presence of other, dissim
components which, by the Gibbs phase rule~which states
that ann-component mixture can exhibit up ton11 coexist-
ing phases at arbitrary temperature!, can induce multiphase
coexistence@17#. Within such a multicomponent system,
particular, slightly polydisperse component will respect t
above relations, which may be tested by an experime
probe which is ‘‘blind’’ to the other components. For in
stance, near-monodisperse colloidal particles in the pres
of ‘‘depletant’’ species@18# exhibit multiple phases. Ligh
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scattered only from the near-monodisperse colloid conta
information on its fractionation@19#, which should obey Eq.
~14!. As an illustration, a multiphase colloidal sample, wi
the composition shown in Fig. 1, will obey the above re
tions, applied only to those particles in rangeX, with the
origin of « defined at its center. The relations are equa
applicable to particles in rangeY, if we are blind to all other
particles~e.g., they may be made invisible by matching th
refractive index to that of the solvent!, and redefine«50
appropriately.

The form of the solution in Eq.~14! is of interest in itself,
not least for the nonappearance ofM. However, one quan-
tity remains unknown: the constant of proportionalityDm1

ex.
That constant is system dependent. For some substancesm1

ex

can be calculated using thermodynamic perturbation the
@12,15#. Unfortunately, this is not possible for a system
hard spheres, as its Hamiltonian is nondifferentiable. Si
the hard-sphere system is of great practical interest for m
elling systems with repulsive interactions, the constant
proportionality is now calculated for that case.

The excess part of the free energy of the polydispe
hard-sphere fluid can be Taylor expanded in the small s
parameter of each of theN particles of interest thus:

Fex5Fmono
ex 1(

i 51

N

« i

]Fex

]« i
U

« i50

1O~«2!,

whereFmono
ex is the excess free energy of the reference co

ponent of monodisperse hard spheres~in the presence of the
rest of the system — see Fig. 1!. In the reference componen
all particles are alike, and so the differentiation may be p
formed on particle number 1 only, without loss of generali
giving

Fex5Fmono
ex 1N«̄

]Fex

]«1
U

«150

1O~«2!.

The change in the identity~the species! of particle 1 when its
size is varied affects onlyF id. The excess free energy con
tains the physical effect of the particle’s size on the rest
the system. By its presence in the container, particle 1 sim
excludes other particles from a volumeVexcl, given that its
interactions are purely hard and repulsive. Thus, increas
its size reduces the effective system volume, and so

]Fex

]«1
52

]Fex

]V

dVexcl

d«1
. ~15!

FIG. 1. The composition of a sample which could exhibit mu
tiphase coexistence. The narrow part of the distribution in rangX
can be treated by the present theory, as could the part in rangY.
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In fact the volume from which particle 1 excludes other p
ticles,Vexcl, depends on their species, and so the quantit
Eq. ~15! is a net effective value,definedby the equation. For
the special case of an almost pure hard-sphere system~not in
the presence of other, dissimilar components!, Vexcl

5 4
3 pR̄P

3 (21«1)3 at low density~correct up to second viria
coefficient!. At high density, the geometry of high-order in
terparticle interactions modifies this. In any case,dVexcl/d«1
is of the order of a particle volume. The resulting excess f
energy density of a polydisperse hard sphere fluid is

Fex

V
5

Fmono
ex

V
112r1PexVeff1O~«2!, ~16!

whereVeff is some~unknown! effective volume, of the orde
of the volume of an average sphere, and exactly that fo
near-pure, low-density system. Applying Eq.~12b! yields

m1
ex512PexVeff ~17!

in terms of the system’s excess pressurePex over an ideal
gas. Since coexisting phases have the same total pressu
follows thatDm1

ex5212VeffDPid. So the constant of propor
tionality in Eq. ~14! is
l-
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Dm1
ex5212VeffDr ~18!

for hard spheres in ergodic~fluid! phases. This calculation
contains the lowest-order effects of polydispersity. Once
polydispersity is sufficient to alter the mode of packing~e.g.,
small particles preferentially filling the gaps between b
ones!, higher-order analysis is needed.

It is apparent that combining a moment description with
small-variable expansion in the distribution’s width is a pr
ductive way to analyze polydisperse systems. While the
plications of this study are clearly wide ranging, it is in
tended to extend its scope by analyzing correlation functi
and multiply polydisperse systems@15#. In addition, some
work is required, using higher-order analysis, to establish
radius of convergence of the expansion and quantify m
precisely the method’s regime of validity.

Many thanks for informative discussions go to Micha
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